Power Incomplete Data Clustering Based on Fuzzy Fusion Algorithm

نویسندگان

چکیده

With the rapid development of economy, scale power grid is expanding. The number equipment that constitutes has been very large, which makes state data grow explosively. These multi-source heterogeneous have differences, lead to variation in process transmission and preservation, thus forming bad information incomplete data. Therefore, research on integrity become an urgent task. This paper based characteristics random chance Spatio-temporal difference system. According sources massive generated by equipment, fuzzy mining model established, divided into numerical non-numerical Take text defects as material. Then, Apriori algorithm array used mine deeply. strong association rules are obtained analyzed. From change trend NRMSE metrics classification accuracy, most filling methods combined with two frameworks this method usually show a relatively stable trend, will not fluctuate greatly growth missing rate. experimental results proposed can effectively improve effect existing sets, fluctuates increase rate, is, improvement for higher than 4.3%. Through clustering technology studied paper, more innovative assessment smart reliability operation carried out, good value reference significance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

ON FUZZY NEIGHBORHOOD BASED CLUSTERING ALGORITHM WITH LOW COMPLEXITY

The main purpose of this paper is to achieve improvement in thespeed of Fuzzy Joint Points (FJP) algorithm. Since FJP approach is a basisfor fuzzy neighborhood based clustering algorithms such as Noise-Robust FJP(NRFJP) and Fuzzy Neighborhood DBSCAN (FN-DBSCAN), improving FJPalgorithm would an important achievement in terms of these FJP-based meth-ods. Although FJP has many advantages such as r...

متن کامل

A Fuzzy C-means Clustering Algorithm Based on Pseudo-nearest-neighbor Intervals for Incomplete Data ⋆

Missing data handling is a challenging issue often dealt with in data mining and pattern classification. In this paper, a fuzzy c-means clustering algorithm based on pseudo-nearest-neighbor intervals for incomplete data is given. The data are first completed using the pseudo-nearest-neighbor intervals approach, then the data set can be clustered based on the fuzzy c-means algorithm for interval...

متن کامل

Fuzzy c-means clustering of incomplete data

The problem of clustering a real s-dimensional data set X={x(1 ),,,,,x(n)} subset R(s) is considered. Usually, each observation (or datum) consists of numerical values for all s features (such as height, length, etc.), but sometimes data sets can contain vectors that are missing one or more of the feature values. For example, a particular datum x(k) might be incomplete, having the form x(k)=(25...

متن کامل

An improved opposition-based Crow Search Algorithm for Data Clustering

Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energy Engineering

سال: 2023

ISSN: ['0199-8595', '1546-0118']

DOI: https://doi.org/10.32604/ee.2022.022877